

Intel® VTune Amplifier XE
Analysis of OpenMP applications

Kirill Rogozhin

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Major reasons why working threads wait

2

When the master thread is executing a serial region, the worker threads are in the OpenMP
runtime waiting for the next parallel region

When synchronization objects are used
inside a parallel region, threads can wait on
a lock release , contending with other
threads for a shared resource
(Synchronization on locks)

Å When a thread finishes a parallel region, it waits at a
barrier for the other threads to finish. (Load imbalance)

Å The number of loop iterations < the number of working
threads so several threads from the team are waiting at
the barrier not doing useful work at all (Not enough
parallel work)

barrier

1

2 3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VTune Amplifier XE OpenMP Analysis

3

Á Tracing of OpenMP is used to provide region/work sharing context

Á Sampling to determine different kinds of overhead, synchronization spinning etc.

- Provided to VTune by Intel OpenMP Runtime:

Å Fork - Join time points of parallel regions

with number of working threads

- Overhead of tracing can be substantial ï used
carefully per region instance on region fork - join
points

- Any type of VTune analysis that support CPU
time calculation (such as hotspots, advanced -
hotspots with or without stacks, etc.)

- With Hotspot Viewpoint selected

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VTune Amplifier XE OpenMP Analysis

4

Enhancing OpenMP analysis with a set of metrics to answer the
following questions:

Å Is serial time of my application significant to prevent scaling?

Å How efficient is my OpenMP parallelization?

Å How much gain I can take if invest in reducing load imbalance/overhead?

Å What regions are more perspective to invest?

Metrics are based on elapsed time direct improvement possibilities on
application wall clock time

Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VTune Amplifier XE OpenMP Analysis

5

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Definition of metrics

6

Serial time : time spent by the application outside any
OpenMP* region in the master thread during collection:
Elapsed time - ×[Elapsed time of all Parallel regions]

Effective CPU time of a Parallel Region Instance:
([CPU time] ï [Spin Time] ï [Overhead Time])

where CPU, Spin and Overhead time aggregated by threads in
the Region instance

Estimated Ideal time of a Region Instance:
[Effective CPU time] / [Number of Threads]

Potential Gain of a Parallel Region Instance:
[Region Instance Elapsed Time] ï [Estimated Ideal Time of
the Region Instance]

Potential Gain of a Region : ×[Potential Gain of all instances
of a Region]

Potential Gain of a Program : ×[Potential Gain of all
Regions]

Effective CPU time

Passive wait
(Not consuming CPU)

Region Instance Elapsed Time

Potential Gain

Join

Spin (busy wait ï
Imbalance, Lock
Contention)

Overhead (Creation,
Scheduling, Reduction)

Fork

Estimated Ideal time of a
Region Instance:

[Effective CPU time] /
[Number of OpenMP Threads]

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP region patterns in VTune Amplifier

Å Serial region
ÅWell -balanced region
Å Imbalanced region
Å Region with runtime overhead
Å Region with synchronization objects

7

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Master thread is computing,
other OMP Workers are
spinning, then waiting

Ôåãäð ßèåßç# ßäëëïá ČÈåèðáî åê Þõ ïáèáßðåëêč

Wall clock time of serial region

CPU time of serial region

Serial region

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

All threads are busy, no overhead
or spinning (no red color)

Potential gain is very small ÏÝæëîåðõ ëâ ÅÒ× ðåéá åï ČÇââáßðåòáč

Well-balanced parallel region

 /* well - balanced loop */

 num = 5000000;

#pragma omp parallel for schedule(guided) // Line 37

 for (int i = 0; i <= num; i++) {

 if (IsPrime (i)) Tick ();

 }

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Potential gain is noticeable

Green color: threads waiting

Red color:
threads spinning

Brown color: threads calculating

Spinning due to
imbalance

Load imbalance
 /* imbalanced loop */

 num = 20000000;

#pragma omp parallel for schedule(static) // Line 56

 for (int i = 3; i <= num; i += 2) {

 if (IsPrime (i)) Tick ();

 }

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Runtime scheduling overhead Big potential gain

Much time for spin
or overhead

Runtime overhead
 /* overhead loop */

 num = 50000000;

 value=2000;

#pragma omp parallel for schedule (dynamic) // Line 71

 for (int i = 3; i <= num; i += 2) {

 if (IsPrime (value)) Tick ();

 }

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Spinning due to Lock contention

Much time for spin
or overhead

Big potential gain

Synchronization objects

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Transition details

ÙÝåðåêã Ýêà ïìåêêåêã ëê Čomp ßîåðåßÝèč

Synchronization objects y Locks & Waits analysis
 /* loop with lock */

 num = 1000000;

#pragma omp parallel for schedule(guided) // Line 96

 for (int i = 3; i <= num; i += 2) {

 if (IsPrime (i)) {

 Tick();

#pragma omp critical // Line 100

 printf ("prime: %d \ n" , i);

 }

 }

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

NASA Parallel Benchmark optimization

Setup
Å CPU: Intel® Xeon® processor E5-2697 v2 @ 2.70GHz, 24 cores/48 threads.
Å OS: RHEL 7.0 x64
Å Compiler : Intel® Parallel Studio XE Composer Edition 2015 update 2
ÅWorkload" ÐÒÄ 0!0!.# ČÅÉ - Conjugate Gradient, irregular memory access
Ýêà ßëééñêåßÝðåëêč éëàñèá# ßèÝïï Ä!

14

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
15

CPU utilization is not ideal

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
16

Potential gain is 34.9%

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
17

Big spin time

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
18

ÏÝêõ Čomp àëč åê ðäá ïÝéá ìÝîÝèèáè îáãåëê

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
19

Per-barrier breakdown

Hottest loop is on line 572
Spin due to imbalance

Static scheduling

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
20

Original y static scheduling by default Changed to dynamic scheduling

Elapsed time increased

Chunk size is only 1 New problem: scheduling Spin is fixed now

