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Major reasons why working threads wait 

2 

When the master thread is executing a serial region, the worker threads are in the OpenMP 
runtime waiting  for the next parallel region  

When synchronization objects are used 
inside a parallel region, threads can wait on 
a lock release , contending with other 
threads for a shared resource 
(Synchronization on locks)  

Å When a thread finishes a parallel region, it waits at a 
barrier for the other threads to finish. ( Load imbalance ) 
 

Å The number of loop iterations < the number of working 
threads so several threads from the team are waiting at 
the barrier not doing useful work at all (Not enough 
parallel work)  

barrier  

1 

2 3 
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VTune Amplifier XE OpenMP Analysis 
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Á Tracing of OpenMP is used to provide region/work sharing context  
 

 

 

Á Sampling to determine different kinds of overhead, synchronization spinning etc.  

-  Provided to VTune by Intel OpenMP Runtime:  
 
Å Fork - Join time points of parallel regions 

with number of working threads  
 
 

-  Overhead of tracing can be substantial ï used 
carefully per region instance on region fork - join 
points  

- Any type of VTune analysis that support CPU 
time calculation (such as hotspots, advanced -
hotspots with or without stacks, etc.)  
 

- With Hotspot Viewpoint selected  
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VTune Amplifier XE OpenMP Analysis 
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Enhancing OpenMP analysis with a set of metrics to answer the 
following questions:  
 

Å Is serial time of my application significant to prevent scaling?  

Å How efficient is my OpenMP parallelization?  

Å How much gain I can take if invest in reducing load imbalance/overhead?  

Å What regions are more perspective to invest?  

 

Metrics are based on elapsed time       direct improvement possibilities on 
application wall clock time  

Intel Confidential  
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VTune Amplifier XE OpenMP Analysis 
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Definition of metrics  
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Serial time : time spent by the application outside any 
OpenMP* region in the master thread during collection:  
Elapsed time -  ×[Elapsed time of all Parallel regions]  

Effective CPU time of a Parallel Region Instance:  
([CPU time] ï [Spin Time] ï [Overhead Time])  
 
where CPU, Spin and Overhead time aggregated by threads in 
the  Region instance  

Estimated Ideal time of a Region Instance:  
[Effective CPU time ] / [Number of Threads]  

Potential Gain of a Parallel Region Instance:  
[Region Instance Elapsed Time] ï [Estimated  Ideal Time of 
the Region Instance]  

Potential Gain of a Region : ×[Potential Gain of all instances 
of a Region]  

Potential Gain of a Program : ×[Potential Gain of all 
Regions]  

Effective CPU time  

Passive wait  
(Not consuming CPU)  

Region Instance Elapsed Time  

Potential Gain  

Join 

Spin  (busy wait ï  
Imbalance, Lock  
Contention)  

Overhead  (Creation,  
Scheduling, Reduction)  

Fork 

Estimated Ideal time of a 
Region Instance:  
 
[Effective CPU time] / 
[Number of OpenMP Threads]  
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OpenMP region patterns in VTune Amplifier 

 
Å Serial region 
ÅWell -balanced region  
Å Imbalanced region  
Å Region with runtime overhead  
Å Region with synchronization objects  

7 
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Master thread is computing, 
other OMP Workers are 
spinning, then waiting  

Ôåãäð ßèåßç# ßäëëïá ČÈåèðáî åê Þõ ïáèáßðåëêč 

Wall clock time of serial region  

CPU time of serial region 

Serial region 
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All threads are busy, no overhead 
or spinning (no red color)  

Potential gain is very small  ÏÝæëîåðõ ëâ ÅÒ× ðåéá åï ČÇââáßðåòáč 

Well-balanced parallel region 

   /* well - balanced loop */  

   num = 5000000;    

  

#pragma omp parallel for  schedule(guided)   // Line 37  

   for  ( int  i = 0; i <= num; i++) {  

      if  ( IsPrime (i)) Tick ();  

   }  
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Potential gain is noticeable  

Green color: threads waiting  

Red color: 
threads spinning  

Brown color: threads calculating  

Spinning due to 
imbalance 

Load imbalance 
   /* imbalanced loop */  

   num = 20000000;      

  

#pragma omp parallel for  schedule( static )   // Line 56  

   for  ( int  i = 3; i <= num; i += 2) {  

      if  ( IsPrime (i)) Tick ();    

   }  
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Runtime scheduling overhead  Big potential gain  

Much time for spin 
or overhead  

Runtime overhead 
   /* overhead loop */  

   num = 50000000;   

   value=2000;  

    

#pragma omp parallel for  schedule (dynamic)  // Line 71  

   for  ( int  i = 3; i <= num; i += 2) {  

      if  ( IsPrime ( value )) Tick ();    

   }  
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Spinning due to Lock contention  

Much time for spin 
or overhead  

Big potential gain  

Synchronization objects 
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Transition details  

ÙÝåðåêã Ýêà ïìåêêåêã ëê Čomp ßîåðåßÝèč 

Synchronization objects y Locks & Waits analysis 
      /* loop with lock */  

   num = 1000000;   

   

#pragma omp parallel for  schedule(guided)   // Line 96  

   for  ( int  i = 3; i <= num; i += 2) {    

   

      if  ( IsPrime (i)) {      

   

         Tick();    

#pragma omp critical                        // Line 100  

         printf ( "prime: %d \ n" , i);  

      }    

   }  
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NASA Parallel Benchmark optimization 

Setup 
Å CPU: Intel® Xeon® processor E5-2697 v2 @ 2.70GHz, 24 cores/48 threads.  
Å OS: RHEL 7.0 x64 
Å Compiler : Intel® Parallel Studio XE Composer Edition 2015 update 2 
ÅWorkload" ÐÒÄ 0!0!.# ČÅÉ - Conjugate Gradient, irregular memory access 
Ýêà ßëééñêåßÝðåëêč éëàñèá# ßèÝïï Ä! 

14 
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CPU utilization is not ideal  
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Potential gain is 34.9%  
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Big spin time 



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.  Optimization Notice  
18 

ÏÝêõ Čomp àëč åê ðäá ïÝéá ìÝîÝèèáè îáãåëê 
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Per-barrier breakdown  

Hottest loop is on line 572  
Spin due to imbalance  

Static scheduling  
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Original y static scheduling by default  Changed to dynamic scheduling  

Elapsed time increased 

Chunk size is only 1 New problem: scheduling  Spin is fixed now 


