
Elementary functions III

Florent de Dinechin, Arénaire Project, ENS-Lyon

Íèæíèé Íîâãîðîä, 23/06/2010.99999

Trigonometric functions

Logarithms

Gal’s accurate table method

The few books

J.M. Muller. Elementary Functions, Algorithms and
Implementation. Birkhauser, 1997, 2006.

P. Markstein. IA-64 and Elementary Functions: Speed and
Precision. Prentice Hall, 2000.

M. Cornea, J. Harrison and P.T.P. Tang. Scientific
Computing on Itanium R©-based Systems. Intel Press, 2002.

Also papers by P.T.P Tang (TOMS 1989, 1990, 1992), S. Gal and
B. Bachelis (TOMS 1991), A. Ziv (TOMS 1991), K.C. Ng (Sun
report 1992), J. Harrison, T. Kubaska, S. Story, P.T.P Tang, (Intel
Tech Journal 1999), C. Anderson, N. Astafiev, S. Story (RNC,
2004), among others.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 1

Trigonometric functions

Trigonometric functions

Logarithms

Gal’s accurate table method

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 2

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities

such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

Overview of trigonometric function implementation

2π

ππ/4 3π

4π

Range reduction thanks to trigonometric identities such as

sin(X) = sin(X + 2kπ)

sin(−X) = − sin(X)

sin(
π

2
− X) = cos(X)

Good approximations to sine and cosine
in a small neighborood of 0

Polynomial approximation
CORDIC family of methods (additions only)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 3

How to compute
sin(1.00100100111101010001× 242)?

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

How to compute
sin(1.00100100111101010001× 242)?

2π

ππ/4 3π

4π

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

How to compute
sin(1.00100100111101010001× 242)?

2π

ππ/4 3π

4π

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

How to compute
sin(1.00100100111101010001× 242)?

2π

ππ/4 3π

4π

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

How to compute
sin(1.00100100111101010001× 242)?

2π

ππ/4 3π

4π

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

How to compute
sin(1.00100100111101010001× 242)?

2π

ππ/4 3π

4π

Floating-point is a logarithmic representation in radix 2

The libm sine and cosine take radian arguments (period 2π)

2 and 2π are irrational one to the other

Sine and cosine of large floating-point numbers are chaotic.

people using them should probably be shot...

However it is possible to compute them accurately,
therefore we will compute them accurately.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 4

But first a lazy solution: functions sin(πx) and
cos(πx)

2 4

Now the period is 2

Behaviour for large arguments is not much more informative
than the previous, but it is cheaper to compute

The trig-of-πx have made it into IEEE 754-2008.

(and we even know how to round them correctly)

(same would hold for degree arguments)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 5

But first a lazy solution: functions sin(πx) and
cos(πx)

2 4

Now the period is 2

Behaviour for large arguments is not much more informative
than the previous, but it is cheaper to compute

The trig-of-πx have made it into IEEE 754-2008.

(and we even know how to round them correctly)

(same would hold for degree arguments)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 5

Argument reduction for radian arguments

2π

ππ/4 3π

4π

Goal: replace X ∈ R with angle α in
[
0,
π

4

)

compute K = X × 4

π
integer part int(K) provides the octant k

keep only the 3 least significant bits

fraction part frac(K) is used to build

Y =

{
frac(K) when k is even
1− frac(K) when k is odd

then α =
π

4
Y

sin X and cos X rebuilt out of k, sin
(π

4
Y
)
, cos

(π
4

Y
)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 6

Argument reduction for radian arguments

2π

ππ/4 3π

4π

Goal: replace X ∈ R with angle α in
[
0,
π

4

)
compute K = X × 4

π

integer part int(K) provides the octant k

keep only the 3 least significant bits

fraction part frac(K) is used to build

Y =

{
frac(K) when k is even
1− frac(K) when k is odd

then α =
π

4
Y

sin X and cos X rebuilt out of k, sin
(π

4
Y
)
, cos

(π
4

Y
)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 6

Argument reduction for radian arguments

2π

ππ/4 3π

4π

Goal: replace X ∈ R with angle α in
[
0,
π

4

)
compute K = X × 4

π
integer part int(K) provides the octant k

keep only the 3 least significant bits

fraction part frac(K) is used to build

Y =

{
frac(K) when k is even
1− frac(K) when k is odd

then α =
π

4
Y

k = 2 k = 1

k = 0

k = 7

k = 6k = 5

k = 4

k = 3

π

4
YX

sin X and cos X rebuilt out of k, sin
(π

4
Y
)
, cos

(π
4

Y
)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 6

Argument reduction for radian arguments

2π

ππ/4 3π

4π

Goal: replace X ∈ R with angle α in
[
0,
π

4

)
compute K = X × 4

π
integer part int(K) provides the octant k

keep only the 3 least significant bits

fraction part frac(K) is used to build

Y =

{
frac(K) when k is even
1− frac(K) when k is odd

then α =
π

4
Y

k = 2 k = 1

k = 0

k = 7

k = 6k = 5

k = 4

k = 3

π

4
YX

sin X and cos X rebuilt out of k, sin
(π

4
Y
)
, cos

(π
4

Y
)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 6

Accurate argument reduction?

Y = frac(K) may come very close to 0

Then, sin
(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.
How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction?

Y = frac(K) may come very close to 0
Then, sin

(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.
How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction?

Y = frac(K) may come very close to 0
Then, sin

(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.

How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

p + g

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction?

Y = frac(K) may come very close to 0
Then, sin

(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.
How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

? p + g

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction?

Y = frac(K) may come very close to 0
Then, sin

(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.
How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

≤ gK p + g

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction?

Y = frac(K) may come very close to 0
Then, sin

(
π
4 Y
)
≈ π

4 Y (Taylor) will also be very small

binary32 x = 16367173 · 272 cos(x) < 2−29

binary32 x = 6381956970095103 · 2797 cos(x) < 2−61

To compute the normalized mantissa of a floating-point sine,
we need the p + g first significant bits.
How many leading zeroes may appear?

Kahan/Douglas algorithm computes a bound gK

for a given floating-point format
rule of thumb: gK ≈ p (the mantissa size)
double-precision: gK = 62

therefore at least 3 + p + gK + g correct bits of the product

K = X × 4

π
need to be computed

K = k

3 ≤ gK p + g

. ..0 0 0 000 Y

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 7

Accurate argument reduction (Payne and Hanek)

K =
4

π
× X

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X

Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X

Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X

Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X

Fortunately we need to compute only
3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

10100010111110011000001101101110010011100100010.0000101010010100111111100

emax

K

1.FX 4
π
× 2EX

p + gK + g

p

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X
Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

10100010111110011000001101101110010011100100010.0000101010010100111111100

emax

K

1.FX 4
π
× 2EX

p + gK + g

p

3 p + gK + g

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X
Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

10100010111110011000001101101110010011100100010.0000101010010100111111100

emax

K

1.FX 4
π
× 2EX

p + gK + g

p

3 p + gK + g

p + 3

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

Accurate argument reduction (Payne and Hanek)

K =
4

π
× 2EX × 1.FX

Very large multiplication
on one side, 4

π shifted left by the exponent of X
I (at most emax positions, where emax is the maximum

exponent of the FP format)

on the other side, the p-bit mantissa of X
Fortunately we need to compute only

3 bits to the left of the point (the octant k)
p + gK + g bits to the right of the point (frac(K))

therefore the multiplication may be left-truncated

Need to store emax + 3 + p + gK + g bits of
4

π

10100010111110011000001101101110010011100100010.0000101010010100111111100

emax

K

1.FX 4
π
× 2EX

p + gK + g

p

3 p + gK + g

p + 3

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 8

The cost of argument reduction, summed up

Accurate argument reduction over the full floating-point range:

extract ≈ 3p bits out of ≈ emax + 2p bits of
4

π
single precision: 180 bits in, 75 bits out
double precision: 1144 bits in, 160 bits out

a multiplication of ≈ p × 3p bits

single precision: 24× 75
double precision: 53× 160

and a leading zero count on the result to remove cancellation

All this because
4

π
is irrational.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 9

In practice

Make the common case fast!

A sequence of tests on x :

No argument reduction at all for x < π/4.

Use Cody and Waite argument reduction for small x

store π/4 as a double-double Ch + Cl

with as many as possible of the lower bits of Ch set to zero
(consider the worst case of cancellation so that p + g bits
remain)

Use the expensive Payne and Hanek only for large x

did I mention already that a program that computes the sine
of a very large argument is probably doing something wrong
anyway ?

Markstein suggests that, on Itanium, an efficient Payne and Hanek
can make such (expensive) tests useless.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 10

Tangent and cotangent

Best implemented by dividing sine by cosine, at least near the
vertical asymptot.

good polynomial approximations away from it

but then code more complex

and shared argument reduction anyway

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 11

Compiler interaction

Nice paper by Markstein (again):
Accelerating Sine and Cosine Evaluation with Compiler Assistance.

Computing both sine and cosine of the same value is quite
common (rotations, etc).

Therefore, split each function into two functions: trigstart,
which is shared, and sinfinishcosfinishtanfinish which
performs the polynomial evaluation.

Then let the compiler optimize share the argument reduction
in this common case.

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 12

Second range reduction?

Is the previously reduced α ∈ [0, π/4] still large for polynomial
evaluation?

need degree 12 polynomials for 60-bit accuracy

but these polynomials can be odd

Use sin(a + y) = sin(a) cos(y) + cos(a) sin(y)

either split again the previously reduced α ∈ [0, π/4]:
α = a + y with a being the few leading bits of α

or directly reduce to α ∈ [0, π/512], and define a as the
fractional bits of K .

In both cases, read tabulated values of sin(a) and cos(a)

and “sum up cleverly”

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 13

Logarithms

Trigonometric functions

Logarithms

Gal’s accurate table method

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 14

Several functions

log: log(x)

log2: log2(x)

log1p: log(1 + x)

-4

-3

-2

-1

 0

 1

 2

 3

 0 2 4 6 8 10

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 15

First range reduction

First decompose x as
x = 2E

′ ·m

with 1 ≤ m < 2 even if x is subnormal
so

log (x) = E ′ · log (2) + log (m)

Using this term directly would lead to catastrophic cancellation in
the case where E ′ = −1 and m ≈ 2. To overcome this difficulty, a
second adjustment is done as follows:

E =

{
E ′ if m ≤

√
2

E ′ + 1 if m >
√

2
y =

{
m if m ≤

√
2

m
2 if m >

√
2

for some value of
√

2 (can be grossly approximate, we use√
2 ≈ 1.5 in hardware)

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 16

Second range reduction

log (x) = E · log (2) + log (y)

and y is in an interval of size ≈ 1, still large for polynomial
approximation

use the k high order bits of y as an index i ,

read from a table ri ≈ 1/y

define the remainder z = y · ri − 1

z can be computed exactly as a doubled-FP

actually it almost fits a double if ri has a k + 1-bit mantissa

so
log (y) = log (1 + z)− log (ri)

Also tabulate the log (ri) as double-doubles

Now z is small: evaluate log (1 + z) thanks to a polynomial
approximation

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 17

Other possibilities of second range reduction

Previous reduction: first appears in 1990 a TOMS paper by Gal
and Bachelis, popularized by Intel papers about Itanium (using
frcpa instruction).
Before that,

Article by Tang in 1990 in Transactions on Mathematical
Software

but involves a division

I don’t remember the one in Markstein’s book

but Markstein agreed later that Intel’s was better

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 18

Gal’s accurate table method

Trigonometric functions

Logarithms

Gal’s accurate table method

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 19

In one slide

We just tabulated pairs (ri , log(ri))

we have a certain freedom of choice for ri ≈ 1/i

(i is itself a gross approximation to y)

we may as well look for a ri such that log(ri) has 8 zeroes
after its 53rd bit of mantissa

(statistically, one of the 256 neighbours of ◦(1/i) has this
property)

Then, log(ri), tabulated as a double, is actually accurate to
2−60

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 20

A very general idea

it may be worth to tabulate (δxi , yi) with yi accurate instead
of a double-binary64 (yh

i , y
l
i)

same memory consumption,
but avoids double-binary64 computing

In CRLibm, we use it to tabulate double-binary64 accurate to
2−120.

...

Florent de Dinechin, Arénaire Project, ENS-Lyon Elementary functions III 21

	Trigonometric functions
	Logarithms
	Gal's accurate table method

