
The Floating Point Environment

Florent de Dinechin, Arénaire Project, ENS-Lyon

Íèæíèé Íîâãîðîä, 30/03/2010.99999

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Floating-point as it should be:
The IEEE-754-85 standard

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 1

The dark ages of anarchy

In the ancient times (before 1985), there were
as many implementations of floating-point as there were machines

no hope of portability

little hope of proving results e.g. on the numerical stability of
a program

horror stories : arcsin

(
x√

x2 + y 2

)
could segfault on a Cray

therefore, little trust in FP-heavy programs

I hope you will tell me a few horror stories from Russia, too.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 2

Rationale behind the IEEE-754-85 standard

Enable data exchange

Ensure portability

Ensure provability

Ensure that some important mathematical properties hold

People will assume that x + y == y + x
People will assume that x + 0 == x
People will assume that x == y ⇔ x − y == 0
People will assume that x√

x2+y2
≤ 1

...

These benefits should not come at a significant performance
cost

Obviously, need to specify not only the number formats
but also the operations on these numbers.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 3

Normal numbers

Desirable properties :

an FP number has a unique representation

every FP number has an opposite

Normal numbers

x = (−1)s × 2e × 1.m

For unicity of representation, we impose d0 6= 0.
(In binary, d0 6= 0 =⇒ d0 = 1: It needn’t be stored.)

single precision: 32 bits
23+1-bit significand, 8-bit exponent, sign bit

double precision: 64 bits
52+1- bit significand, 12-bit exponent, sign bit

double-extended: anything better than double
IA32: 80 bits
IA64: 80 or 82 bits

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 4

Exceptional numbers

Desirable properties :

representation of 0

representations of ±∞ (and therefore ±0)

standardized behaviour in case of overflow or underflow.

return ∞ or 0, and raise some flag/exception

representations of NaN: Not a Number
(result of 00,

√
−1, ...)

Quiet NaN
Signalling NaN

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 5

Choice of binary representation

Desirable property: the order of FP numbers is the lexicographical
order of their binary representation

Binary encoding of positive numbers

place exponent at the MSB (left of significand)

infinity is larger than any normal number:
code it with the largest exponent 111...1

zero is smaller than any normal number:
code it with the smallest exponent 000...0

for normal exponents: biased representation

assume wE bits of exponent
exponent field E ∈ {0...2wE − 1} codes for exponent
e = E − bias
In IEEE-754, bias for significand in [1, 2) is
bias = 2wE−1 − 1 = 0111...1

How to code NaNs? Significand of infinity? Significand of 0? ...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 6

Subnormal numbers

x = (−1)s × 2e × 1.m
−8

−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

0

Desirable properties :

x == y ⇔ x − y == 0
Graceful degradation of precision around zero

Subnormal numbers

if E = 00...0, the implicit d0 is equal to 0:

x = (−1)s × 2e × 0.m

−8
−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

−0.0001 .2
−8

−0.1111 .2
−8

0

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 7

Operations

Desirable properties :

If a + b is a FP number, then a⊕ b should return it

Rounding should not introduce any statistical bias

Sensible handling of infinities and NaNs

Correct rounding to the nearest:

The basic operations (noted ⊕, 	, ⊗, �), and the square root
should return the FP number closest to the mathematical result.
(in case of tie, round to the number with an even significand =⇒ no

bias)

Three other rounding modes: to +∞, to −∞, to 0, with similar
correct rounding requirement (and no tie problem).

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 8

Complete binary representation (positive numbers)

3 bits of exponent, 4 bits of fraction (4+1 bits of significand)
exp fraction value comment

000 0000 0 Zero

000 0001 0.0001 · 2emin smallest positive (subnormal)
... ...
000 1111 0.1111 · 2emin largest subnormal

001 0000 1.0000 · 2emin smallest normal
... ...
110 1111 1.1111 · 2emax largest normal

111 0000 +∞
111 0001 NaN
... ...
111 1111 NaN

NextAfter obtained by adding 1 to the binary representation
from 0 to +∞

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 9

A few theorems (useful or not)

Let x and y be FP numbers.

Sterbenz Lemma: if x/2 < y < 2x then x 	 y = x − y

The rounding error when adding x and y :
r = (x + y)− (x ⊕ y) is an FP number, and if x ≥ y it may
be computed as

r := y 	 ((x ⊕ y)	 x);

The rounding error when multiplying x and y :
r = xy − (x ⊗ y) is an FP number and may be computed by a
(slightly more complex) sequence of ⊗, ⊕ and 	 operations.

√
x ⊗ x + y ⊗ y ≥ x

...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 10

Here I should try to prove Sterbenz lemma

Floating-point format in radix β with p digits of significand
Suppose x and y are positive.
Notation using integral significands:

x = Mx × βex−p+1,

y = My × βey−p+1,

with
emin ≤ ex ≤ emax

emin ≤ ey ≤ emax

0 ≤ Mx ≤ βp − 1

0 ≤ My ≤ βp − 1.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 11

y ≤ x therefore ey ≤ ex : define δ = ex − ey

x − y =
(

Mxβ
δ −My

)
× βey−p+1.

Define M = Mxβ
δ −My

x ≥ y implies M ≥ 0;

x ≤ 2y implies x − y ≤ y , hence Mβey−p+1 ≤ Myβ
ey−p+1;

therefore,
M ≤ My ≤ βp − 1.

So x − y is equal to M × βe−p+1 with emin ≤ e ≤ emax and
|M| ≤ βp − 1. This shows that x − y is a floating-point number,
which implies that it is exactly computed.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 12

Remarks on this proof

We haven’t used the rounding mode ?!?

We just proved that the mathematical result is representable
Any rounding mode ◦ verifies: if Z is representable, then
◦(Z) = Z
Sterbenz lemma is true for any rounding mode.

We need subnormals, of course.

−8
−1.0000 .2

−1.1111.2
−8

−7
−1.0000 .2

0

(Normal numbers have an integral significand such that
βp−1 ≤ M ≤ βp − 1 and we couldn’t prove the left inequality)

We don’t care about the binary encoding (only that there is
an emin)

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 13

The conclusion so far

We have a standard for FP, and it seems well thought out.

(all we have seen was already in the 1985 version – more on
the 2008 revision later)

Let us try to use it.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 14

Standard compliance

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 15

A frightening introductory example

Let us compile the following program with gcc under Linux for an
IA32 processor (Intel Pentium, AMD Athlon, ...)

1 double r e f , i n d e x ;
2

3 r e f = 169 .0 / 1 70 . 0 ;
4

5 f o r (i = 0 ; i < 250 ; i++) {
6 i n d e x = i ;
7 i f (r e f == (i ndex / (i ndex + 1))) break ;
8 }
9

10 p r i n t f (” i=%d\n” , i) ;

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 16

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view:
Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Yes but which epsilon in the previous program?
Besides, obviously, on this expensive laptop, FP computing is not
deterministic, even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 17

Who is in charge of ensuring the standard?

The processor

has internal FP registers,
performs basic FP operations,
raises exceptions,
writes results to memory.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 18

Who is in charge of ensuring the standard?

The processor

The operating system

handles exceptions
computes functions/operations not handled directly in
hardware

I most elementary functions (sine/cosine, exp, log, ...),
I divisions and square roots on Itanium
I subnormal numbers on Alpha

handles floating-point status: precision, rounding mode, ...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 19

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

should have a well-defined semantic,
... (detailed in some arcane 1000-pages document)

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 20

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

The compiler

has hundreds of options
some of which to preserve the well-defined semantic of the
language
but probably not by default

I Marketting says: default should be optimize for speed!

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 21

Who is in charge of ensuring the standard?

The processor

The operating system

The programming language

The compiler

The programmer

... is in charge in the end.

I knew it would all be my fault in the end, says the Programmer.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 22

The conclusion so far

We have a standard for FP, and it is a good one

It doesn’t seem enabled by default

Enabling it will require cooperation of many entities

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 23

Floating point

in current processors

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 24

Let us review a few processors

... more precisely, a few families defined by their instruction sets.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 25

The legacy FPU of IA32 instruction set

Implemented in processors by Intel, AMD, Via/Cyrix, Transmeta...
since the Intel 8087 coprocessor in 1985

internal double-extended format on 80 bits:
significand on 64 bits, exponent on 15 bits.

(almost) perfect IEEE compliance on this double-extended
format

one status register which holds (among other things)

the current rounding mode
the precision to which operations round the significand: 24, 53
or 64 bits.
but the exponent is always 15 bits

For single and double, IEEE-754-compliant rounding and
overflow handling (including exponent) performed when
writing back to memory

There probably is a rationale for all this, but... ask Intel people.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 26

What it means

Assume you want a portable programme, i.e use double-precision.

Fully IEEE-754 compliant possible, but slow:

set the status flags to “round significand to 53 bits”
then write the result of every single operation to memory
(not every single but almost)

Next best: compliant except for over/underflow handling:

set the status flags to “round significand to 53 bits”
but computations will use 15-bit exponents instead of 12
OK if if you may prove that your program doesn’t generate
huge nor tiny values
OK for 169/170, right ?

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 27

The broken program, uglily fixed

11 #inc lude<s t d i o . h>
12 #inc l u d e <f p u c o n t r o l . h> /∗ Non po r t ab l e , non s t anda rd ∗/
13
14 i n t main () {
15 i n t i ;
16 double r e f , i n d e x ;
17
18 uns igned sho r t cw ;
19 /∗ Set FPU f l a g s to use double , not doub l e extended ,
20 with round ing to n e a r e s t ∗/
21 cw = (FPU DEFAULT & ˜ FPU EXTENDED) | FPU DOUBLE ;
22 FPU SETCW(cw) ;
23
24
25
26 r e f = 1 6 9 . 0 / 1 7 0 . 0 ;
27
28 f o r (i = 0 ; i < 2 5 0 ; i ++) {
29 i n d e x = i ;
30 i f (r e f == i n d e x / (i n d e x + 1 . 0))
31 break ;
32 }
33
34 p r i n t f (” i=%d\n” , i) ;
35 }

Great, the FP computation seems deterministic (i.e. portable) now,
but with this non-portable mess around it.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 28

Wait a minute

Obviously, the problem was that the processor was rounding one
169/170 to double-extended, and the other to double.

But but but, all my variables were declared as double !?!

Is it a gcc bug? A linux bug? A programmer bug?

...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 29

A light at the end of the IA32 tunnel?

It is called SSE2.

Available for all recent IA32 and EMT64 processors
(AMD and Intel)

An additional FP unit able of

2 identical double-precision FP operations in parallel, or
4 identical single-precision FP operations in parallel.

Real double precision (12-bit exponents)

... and usually faster than the standard FPU

Let us see if this PC is recent enough:
gcc -msse2 -mfpmath=sse retrouve.c

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 30

Quickly, the old Macs

Power and PowerPC processors

No double-extended hardware

But one or two FMA: Fused Multiply-and-Add
Compute round(a× b + c):

I faster: Roughly in the time of a FP multiplication
I more accurate: Only one rounding instead of 2

but breaks some expected mathematical properties:

I Loss of symmetry in
√
a2 + b2

I Worse: if b2 ≥ 4ac then (...)
√
b2 − 4ac

By default, gcc on MacOS X disables the use of FMA
altogether

last time I checked. Your mileage may vary!

IEEE-754-1985 compliance costs a factor 2 in performance...

Addition: round(a× 1 + c)
Multiplication: round(a× b + 0)

Fixed in IEEE-754-2008

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 31

Quickly, IA64 (aka Itanium)

They don’t sell that many of them, but the best available FP
architecture

Two double-extended FMA (best of IA32, and best of Power)

instead of one FP status register, 4 of them, selectable on an
instruction-basis

you can mix round up and round down, double and
double-extended
on all other architecture, changing the FP status requires
flushing the pipeline (10-100 cycles)

A register format with two more exponent bits (17).

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 32

The conclusion so far

We have a standard for FP, and it is a good one

All processors can do better than the standard,
in different ways

To get standard behaviour,
you will lose performance and/or accuracy

Unfortunately, the same holds for the software...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 33

Floating point

in current software
(OS, languages and compilers)

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 34

Evaluation of an expression

Consider the following program, whatever the language

36 f l o a t a , b , c , x ;
37

38 x = a+b+c+d ;
39 }

Two questions:

In which order will the three addition be executed?

What precision will be used for the intermediate results?

Fortran, C and Java have completely different answers.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 35

Evaluation of an expression

40 f l o a t a , b , c , x ; /∗ Simple p r e c i s i o n ∗/
41
42 x = a+b+c+d ;
43 }

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
Is the order fixed by the language, or is the compiler free to
choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 36

Evaluation of an expression

44 f l o a t a , b , c , x ;
45
46 x = a+b+c+d ;
47 }

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 37

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard:
International Standard ISO/IEC1539-1:2004. Programming
languages – Fortran – Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3.

and 1. is a computational difference, not a mathematical
difference. The difference between the values of the expressions
5/2 and 5./2. is a mathematical difference, not a computational
difference.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 38

La philosophie de Fortran (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not
violated. Two expressions of a numeric type are mathematically
equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically
equivalent expressions of numeric type may produce different
computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 39

Fortran in details

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Allowable alternative form
X+Y Y+X
X*Y Y*X
-X + Y Y-X
X+Y+Z X + (Y + Z)
X-Y+Z X - (Y - Z)
X*A/Z X * (A / Z)
X*Y-X*Z X * (Y - Z)
A/B/C A / (B * C)
A / 5.0 0.2 * A

Last line is valid if you replace 5 by 4, but not by 3. Why?

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 40

Fortran in details (2)

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Forbidden alternative form

I/2 0.5 * I
X*I/J X * (I / J)
I/J/A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X*Y-X*Z

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 41

Fortran in details (3)

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the
alternative forms that may be used by the processor in the actual
evaluation of the expression. This is useful for controlling the
magnitude and accuracy of intermediate values developed during
the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 42

Fortran in details (4)

You have been warned.

The inclusion of parentheses may change the mathematical value
of an expression. For example, the two expressions A*I/J and
A*(I/J) may have different mathematical values if I and J are of
type integer.

That was the difference between C=(F-32)*(5/9) and
C=(F-32)*5/9.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 43

Enough standard, the rest is in the manual

(yes, you should read the manual of your favorite language
and also that of your favorite compiler)

Advertising: the Lahey compiler seems to make its best with
respect to portability.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 44

The C philosophy

The “C99” standard:
International Standard ISO/IEC 9899:1999(E).
Programming languages – C

Contrary to Fortran, the standard imposes an order of
evaluation

Parentheses are always respected,
Otherwise, left to right order with usual priorities
If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

Consequence: little expressions rewriting

Only if the compiler is able to prove that the two expressions
always return the same FP number, including in exceptional
cases

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 45

C in the gory details

Morceaux choisis from appendix F.8.2 of the C99 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor
NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 46

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore
this part of the standard...
But there is always an option to enable it.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 47

The C philosophy (2)

So, perfect determinism wrt order

Strangely, precision is not determined by the standard: it
defines a bottom-up minimum precision, but invites the
compiler to take the largest precision which is larger than this
minimum, and no slower

Idea:

If you wrote float somewhere, you probably did so because
you thought it would be faster than double.
If the compiler gives you long double you won’t complain.

If you’re not yet fully asleep, you now realize that my example
buggy program fully respects C99 and IEEE-754.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 48

Of registers and memory

48 double r e f , i n d e x ;
49

50 r e f = 169 .0 / 1 70 . 0 ;
51

52 f o r (i = 0 ; i < 250 ; i++) {
53 i n d e x = i ;
54 i f (r e f == (i ndex / (i ndex + 1))) break ;
55 }
56

57 p r i n t f (” i=%d\n” , i) ;

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 49

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or
double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation gets much less
accurate!

Big drawbacks

Storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore in the C philosophy it should be
avoided.
The compiler is free to choose which variables stay in registers,
and which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
Thus, sometimes a value is rounded twice, which may be even
less accurate than the target precision
And sometimes, the same computation may give different
results at different points of the program.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 50

A funny horror story

(it’s a real story, told by somebody at CERN)

Use the (robust and tested) standard sort function of the STL
C++ library

to sort objects by their radius: according to x*x+y*y.

Sometimes (rarely) segfault, infinite loop...

Why?

the sort algorithm works under the naive asumption that
if A ≮ B, then A ≥ B
(it is difficult to write a sort algorithm without this asumption)
Sometimes, x*x+y*y compiled differently at two points of the
programme, which breaks the asumption.

It’s a bug, for sure, but there was no programming mistake.
And it is very difficult to fix.
(let us try to fix retrouve.c)

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 51

Still not there

58 long double r e f , i n d e x ;
59

60 r e f = 169 .0 / 1 70 . 0 ;
61

62 f o r (i = 0 ; i < 250 ; i++) {
63 i n d e x = i ;
64 i f (r e f == index / (i ndex + 1)) break ;
65 }
66

67 p r i n t f (” i=%d\n” , i) ;

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 52

It takes what it takes

68 long double r e f , i n d e x ;
69

70 r e f = (long double) 169 .0 / 1 70 . 0 ;
71

72 f o r (i = 0 ; i < 250 ; i++) {
73 i n d e x = i ;
74 i f (r e f == index / (i ndex + 1)) break ;
75 }
76

77 p r i n t f (” i=%d\n” , i) ;

Don’t worry, this program also works on processors without
double-extended:
double will be used instead.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 53

Quickly, Java

Integrist approach to determinism: compile once, run
everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but... only on PCs

(Sun also sells SPARCs)
	 You’ve paid for double-extended processor, and you can’t use

it (because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger
precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 54

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point
numbers. You are at the mercy of the underlying machine
architecture (and C or Java implementation) for the accepted
range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers;
the savings in processor and memory usage that are usually the
reason for using these is dwarfed by the overhead of using objects
in Python, so there is no reason to complicate the language with
two kinds of floating point numbers.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 55

Quickly, the operating systems

Default flags are typically round to nearest.
WRT rounding precision on IA32 hardware,

Linux will use double-extended by default,

(but on Debian AMD64, SSE2 is used by default, so most FP
is double anyway)

MacOS X on intel uses only SSE2, too.

Solaris will work in double by default,

Sun sells Solaris on SPARC and x86.
Sun also sells Java.

Microsoft OSs work in double by default

since Bill Gates decided that “the 8087 socket will mostly stay
empty anyway”

These defaults may be overriden by languages and programs.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 56

Conclusion: educating the
weakest link

Floating-point as it should be

Standard compliance

Floating point in current processors

Floating point in current software (OS, languages and compilers)

Conclusion: educating the weakest link

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 57

It shouldn’t be so messy, should it?

Don’t worry, things are improving

SSE2 makes life a lot simpler for most of us

The 2008 revision of IEEE-754 addresses the issues of

reproducibility versus performance
precision of intermediate computations
etc

but it will take a while to percolate to your programming
environment

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 58

So, do you trust your computer now ?

“It makes me nervous to fly on airplanes since I know they are
designed using floating-point arithmetic.”

A. Householder

(... well, now they are piloted using floating-point arithmetic...)

Feel nervous, but feel in control.

It’s not dark magic, it’s science.

Let us quickly review how we can improve our confidence in
floating-point.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 59

Arithmetic is not always the culprit

Ask first-year students to write a simulation of one planet
around a sun

x(t) := v(t)δt
v(t) := a(t)δt

a(t) :=
K

||x(t)||2

You always get rotating ellipses

Analysing the simulation shows that it creates energy.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 60

Beware of subtractions

Cancellation: if you subtract numbers which were very close
(example: 1.2345e0 - 1.2344e0 = 1.0000e-4)

you loose significant digits (and get meaningless zeroes)
although the operation is exact! (no rounding error)

Problems may arise if such a subtraction is followed by
multiplications or divisions

You may get meaningless digits in your result

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 61

Avoiding cancellations in practice

Computing the area of a triangle

Heron of Alexandria:
A :=

√
(s(s − x)(s − y)(s − z)) with s = (x + y + z)/2

Kahan’s algorithm:
Sort x , y , z so that x ≥ y ≥ z ;
If z < x − y then no such triangle exists ;
else A :=√

((x + (y + z))× (z − (x − y))× (z + (x − y))× (x + (y − z)))/4

Exercise: Solving the quadratic equation by −b±
√
b2−4ac

2a

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 62

Beware of additions

In floating-point:

BigNumber + SmallNumber = BigNumber

if BigNumber is big enough.

Solutions:

If you have to add terms of known different magnitude, it may
be a good idea to sort them (see triangle example)

Compensated summation algorithms:

compute the rounding error made by each operation
and add it back at a later stage to correct the final result
works even for large sums-of-products (matrix operations etc)
Look up recent papers by Rump and Ojita

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 63

Speaking of which

When you write a compensated summation algorithm, it is full of
r := b - ((a + b)- a);

That’s why it’s a good thing that even Fortran respects your
parentheses.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 64

Beware of flushing to zero/infinity

Typical examples:

You compute
x2

√
x3 + 1

for a large value of x

Instead of (large)
√

x you get 0

Here again, the solution is
to expect the problem before it hurts you
and to protect the computation with a test which returns

√
x

for large values
(a more accurate result, obtained faster...)

Extreme version of the previous

f (x) =
√√

....
√

x 128 times

g(x) =
((

(x2)2
)
...
)2

128 times

Compute and plot g(f (x)) for x ∈ [0, 2]

√
1− u = 1− u/2− ...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 65

Trust your math

Classical example: Muller’s recurrence
x0 = 4
x1 = 4.25
xn+1 = 108− (815− 1500/xn−1)/xn

Any half-competent mathematician will find that it converges
to 5

On any calculator or computer system using non-exact
arithmetic, it will converge very convincingly to 100

xn =
α3n+1 + β5n+1 + γ100n+1

α3n + β5n + γ100n

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 66

Error analysis

Proving the absence of over/underflow may be relatively easy

when you compute energies, not when you compute areas

Error analysis techniques: how are your equations sensitive to
roundoff errors ?

Forward error analysis: what errors did you make ?
Backward error analysis: which problem did you solve exactly ?

Notion of conditioning:

Cond =
|relative change in output|
|relative change in input|

= lim
x̂→x

|(f (x̂)− f (x)) /f (x)|
|(x̂ − x)/x |

Cond ≥ 1 problem is ill-conditionned / sensitive to rounding
Cond � 1 problem is well-conditionned / resistant to rounding
Cond may depend on x : again, make cases...

More details (and even tutorials) to follow.

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 67

“Mindless” schemes to improve confidence

Repeat the computation in arithmetics of increasing precision,
until digits of the result agree.

Maple, Mathematica, GMP/MPFR

Repeat the computation with same precision but different
(IEEE-754) rounding modes, and compare the results.

all you need is change the processor status in the beginning

Repeat the computation a few times with same precision,
rounding each operation randomly, and compare the results.

stochastic arithmetic, CESTAC

Repeat the computation a few times with same precision but
slightly different inputs, and compare the results.

easy to do yourself

None of these schemes provide any guarantee. They may increase
confidence, though.
See “How Futile are Mindless Assessments of Roundoff in Floating-Point

Computation ?” on Kahan’s web page

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 68

Interval arithmetic

Instead of computing f (x), compute an interval [fl , fu] which
is guaranteed to contain f (x)

operation by operation
use directed rounding modes
several libraries exist

This scheme does provide a guarantee

... which is often overly pessimistic
(“ Your result is in [−∞,+∞], guaranteed”)

Limit interval bloat by being clever (changing your formula)

... and/or using bits of arbitrary precision when needed (MPFI
library).

Therefore not a mindless scheme

Practical examples later (course on Gappa-assisted error analysis)

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 69

Conclusion: to be continued

We have a standard for FP, and eventually your PC will
comply

The standard doesn’t guarantee that the result of your
program is close at all to the mathematical result it is
supposed to compute.

But at least it enables serious mathematics with floating-point

One drawback of the standard:

In the 70s, when people ran the same program on different
machines, they got widely different results.

They had to think about it and find what was wrong.

Now they get the same result, and therefore trust it.

We have to educate them...

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 70

Tentative outline of next lecture

Becoming a binary floating-point expert

Representation tips and tricks

Rounding to an integer

Sterbenz Lemma

Exact addition

Exact multiplication

Evaluating a polynomial accurately to the last bit

Compensated sums

Compensated Horner evaluation

Florent de Dinechin, Arénaire Project, ENS-Lyon The Floating Point Environment 71

	Floating-point as it should be
	Standard compliance
	Floating point in current processors
	Floating point in current software (OS, languages and compilers)
	Conclusion: educating the weakest link

