AnyLogic –
a New Generation
Professional Simulation Tool

Yuri G. Karpov
XJTek
St.Petersburg Polytechnical University
Russia
Modeling

The model

Simulation

The optimized model

Analytical

World of Models

Real World

The Problem

Experiments

Too expensive or impossible

The Solution
Analytical vs Simulation Modeling

<table>
<thead>
<tr>
<th>Analytical (e.g. Excel-based)</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Static, mostly deterministic model</td>
<td>• Executable simulation model</td>
</tr>
<tr>
<td>+ Helps to find some solutions</td>
<td>+ Naturally captures causal dependencies and timed constraints of any complexity</td>
</tr>
<tr>
<td>+ Easy to implement</td>
<td>+ Easily captures stochastic nature of the problem</td>
</tr>
<tr>
<td>- Hard to capture time, dynamics</td>
<td>+ Can play the model behavior in detail</td>
</tr>
<tr>
<td>- Hard to capture complex causal dependencies</td>
<td>+ Enables to measure virtually anything</td>
</tr>
<tr>
<td>- Hard to model time-related constraints</td>
<td>- Takes more time and skills to develop</td>
</tr>
<tr>
<td>- Cannot play the model in time</td>
<td>- May miss a good solution or even give incorrect one</td>
</tr>
<tr>
<td></td>
<td>+ Gives better, more informed solutions</td>
</tr>
</tbody>
</table>

FOR SYSTEMS WITH DYNAMIC BEHAVIOR:

- May miss a good solution or even give incorrect one

VI Int Congress on Math Modeling, September 20-26th 2004, Nizni Novgorod, Russia
An Example: Airport Terminal

- How many check-in, security check and passport control cabins are needed?
- How many passengers airport can serve?
- How many aircrafts airport can take?
- How to organize schedule?

...
Abstraction Levels and Approaches

High Abstraction
- Less Details
- Macro Level
- Strategic Level

Middle Abstraction
- Average Details
- Meso Level
- Tactical Level

Low Abstraction
- More Details
- Micro Level
- Operational Level

Nano Level
- Individual objects, exact sizes, distances, velocities, timings, …

Aggregates, global feedback dynamics, …
- HIGH LEVEL (HLS)
 - System Dynamics (SD)
 - Levels (aggregates)
 - Stock & flow diagrams
 - Feedback loops
 - Dynamic Systems (DS)
 - Physical state variables
 - Block diagrams and/or algebraic-differential eq

Agent Based (AB)
- Active objects
- Individuals
- Behavior rules
- Direct or indirect interaction
- Environment models

Discrete Event (DE)
- Entities (passive objects)
- Flowcharts and/or networks
- Resources

Continuous media
- Elasticity of solids
- Hydrodynamics
- Aerodynamics

Nano Level
- Elasticity of solids
- Hydrodynamics
- Aerodynamics

Middle Abstraction
- Average Details
- Meso Level
- Tactical Level

Low Abstraction
- More Details
- Micro Level
- Operational Level

High Abstraction
- Less Details
- Macro Level
- Strategic Level
AnyLogic
A New Technology Simulation Tool

Basic simulation modeling concepts are being developed

1950s
- Block-based modeling of ODE on analog computers
- Gordon, G. *A general purpose systems simulator*. IBM Syst. J. 1962

1960s

1970s

1980s

Modern IT concepts and theories
- Object-oriented approach
- New programming languages
- Hybrid modeling theory
- Theory of distributed communicated processes
- Modern graphical user interface

1990s

New Millennium

Traditional tools

AnyLogic

AnyLogic started in 1998
AnyLogic: all abstraction levels and mix approaches

High Abstraction
- Less Details
- Macro Level
- Strategic Level

Middle Abstraction
- Average Details
- Meso Level
- Tactical Level

Low Abstraction
- More Details
- Micro Level
- Operational Level

Aggregates, global feedback dynamics, ...
- Alcohol Use Dynamics
- Flocks of Boids
- Transport Optimization
- Competition in Pulp Market
- Transport Flow
- St. Petersburg Subway
- USA Blackout
- St. Charles Subway Station
- Candy Promotion Game
- Car Suspension
- Dynamic Damper
- Crane Control
- Gas Engine

Individual objects, exact sizes, distances, velocities, timings, ...

VI Int Congress on Math Modeling, September 20-26th 2004, Nizni Novgorod, Russia
AnyLogic Modeling Framework

- Ports
- Messages
- Statecharts
- Timers
- Events

- Hybrid

- Discrete

- Continuous

- UML-RT

- Variables
 - ODE
 - DAE
 - NAE
 - Matrixes

- Active Objects
 - Encapsulation
 - Hierarchy
 - Inheritance

- Object Oriented
 - Java API

- Java

Ports Messages Statecharts Timers Events

Statecharts - discrete - hybrid

Variables ODE DAE NAE Matrixes

Active Objects Encapsulation Hierarchy Inheritance

Object Oriented Java API

Java
AnyLogic Professional Simulation Tool

- Discrete, continuous and hybrid modeling
- Multiple modeling approaches:
 - UML-based OO modeling
 - Block-based flowchart modeling using predefined library blocks
 - Differential and algebraic equations
 - Modeling in Java

- A strong set of concepts applicable across domains:
 - Control, traffic, ecology, …
 - Economy, business, financial, …
 - Social, epidemic distribution, etiology, …
 - Manufacturing, supply chain, logistics, …
 - Telecom, networks, protocols, hardware, …
 - Mechanics, chemical, material handling, …
 - Education, military - and more…
AnyLogic - basics

• Java
• OO-approach, UML-RT
 – Active objects, messages, statecharts, timers, etc., etc., etc.
• Hybrid dynamic system theory
 – Algebraic-differential equations, hybrid automata
• Theory of communicated sequential processes
• Best ideas of traditional simulation approaches
 – Visual specification, Flowcharts, Block diagrams, System Dynamics, ...
• > 20 years of research
 – Research projects for HPLabs, Philips, Siemens, Samsung, IBM, AFRL, ...
• > 10 years of SW product and simulation model development
 – SW products: COVERS, ModelVision, xjCharts, AnyStates, AnyLogic
Two Stages of Modeling in AnyLogic

Reducing complexity/flexibility

- Visual model development
 - Active objects, structure and behavior
 - Continuous / discrete
 - Predefined library objects
- Visual animation development
- Use all power of Java if needed

The ultimate goal is analysis, not model development!

- Run the model
 - Interactive control of model execution
 - Support of debugging and calibration
- Rich set of experimental stuff
 - Sensitivity, optimization, stochastic, ...
- Integration, interoperability
 - DB and Spreadsheet interface
 - Interface with external hardware and SW
AnyLogic – State of the Art

• Dozens of companies use AL

• Universities all over the World
 – TU Vienna, Uni Maastricht, Uni Karlsruhe, Asahikawa National College of Technology, Auburn Uni, Purdue Uni, Uni of Illinois, Uni Virinia, Australian Defence Force Academy, Uni-Erlangen, Fraunhofer Uni, Uni Uta, Ohio State Uni, …

• Russian Companies and Universities
 – Russian Aluminium, EuroSib, ImpexBank
 – State University of Management, Ulianovsk Uni, Ural Tech Uni, St.Petersburg Uni, St.Petersburg Banking Inst, …

• Partners
 – ATN(France), ARC(Austria), SMS, SimNexus, OptTec, StatFit,

• About dozen of distributors
 – ARC, Simulation Modeling Services, ATN, Cosinus, Decisio Consulting, Pitotech (Taiwan), Evans & Peck (Australia), …

• Conferences
 – Winter Sim, IIE Annual Conf, System Dynamics Conf, Sim Sol, …
Thank You!

• Questions?

www.xjtek.com

www.xjtek.ru